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A B S T R A C T

Purpose: Bio-inspiration is an approach in engineering aimed at optimizing artificial systems by
borrowing biological concepts from nature. This review sets out to summarize the fundamental aspects
employed by nature to avoid premature dental failures. On the basis of these findings, it then defines and
evaluates rules for ‘post-modern’ manufacturing processes to imitate or regenerate complex biological
systems.
Study selection: A thorough literature search was conducted using PubMed, the Cochrane Library
database and Google Scholar. Peer-reviewed articles and other scientific literature provided up-to-date
information addressing two topics: (a) how natural dental tissues combine to create a structure as tough,
strong and highly resistant to fatigue failure as tooth, and (b) how ‘bio-inspiration’ can be applied to the
manufacture of dental restorations, taking into consideration the limitations of techniques currently used
in dentistry.
Results: Bio-inspired concepts have already been successfully applied in a range of engineering fields to
enhance the toughness and strength of artificial materials. The area of technology with greatest potential
to unlock the development of these new approaches is additive manufacturing. Consequently, these
technologies and concepts could be applied to dentistry to improve the mechanical properties of dental
restorations. Three-dimensional (3D) printing technologies also offer a new and promising prospect of
regenerating dental tissues.
Conclusions: Considering the limitations to both conventional and subtractive computer-aided design/
computer-aided manufacturing (CAD/CAM) methods, further research should focus on new, additive 3D-
printing techniques. This may open new research paths in dentistry that will enhance the clinical
performance of artificial dental materials.

© 2018 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Over billions of years of evolution, nature has invented many
ingenious solutions to many complex problems. Today’s cutting-
edge technologies have since converted nature into a source of
inspiration, allowing the extrapolation and application of its
different approaches to attempt to solve contemporary engineer-
ing problems. The process has become increasingly common in
scientific research and has received a variety of labels in recent
years: biomimetics, bio-inspiration, bionics, biomimicry, nature-
based solutions, etc. The engineer and physicist Schmitt OH, first
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used the term ‘biomimetics’ in 1957 to describe a biological
approach to engineering [1,2]. In 1974, Webster’s Dictionary added
its first definition of ‘biomimetics’: “the study of the formation,
structure, or function of biological materials, mechanisms and
processes in order to synthesize artificial products that mimic
natural ones.” Nowadays, under International Organization for
Standardization (ISO) standard no. 18458:2015 [3], ‘biomimetics’ is
defined as the “ . . . interdisciplinary cooperation of biology and
technology or other fields of innovation with the goal of solving
practical problems through the function analysis of biological
systems, their abstraction into models, and the transfer into and
application of these models to the solution.” Nevertheless, there is
nothing to forbid the labelling of any technological development as
‘bio-inspired,’ just so long as there is convincing evidence of an
existing biological model generator [1]. This translation of
information from natural models (such as biological materials,
served.
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Table 1. Mechanical properties of enamel and dentin. The wide range of values is a
reflection of the many experimental variables at play: (a) type of mechanical test
used; (b) environmental condition of specimens (humidity, temperature); (c)
anatomical variation of specimens (tubule orientation, dimension and density in
dentin; prism and tuft arrangement in enamel); (d) orientation of stress applied and
location of tested structure in the tooth. In terms of spatial distribution, external
enamel shows the highest brittleness, hardness and elastic modulus. Mantle dentin
and external, tubule-poor dentin are harder, more brittle and less elastic than inner,
tubule-rich dentin. Within the dentino-enamel junction (DEJ), mechanical
properties gradually shift from enamel to dentin.

KIC (MPa m0.5) Hardness (GPa) E-modulus (GPa)

Enamel 0.6–1.5 3–5 70–100
Dentin 1–3 0.4–0.8 15–30
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functions, structures or processes) into artificial devices has
opened up the possibility of developing novel research strategies
that incorporate 3.8 billion years of evolution [4]. The process
starts with the analysis of a biological system and the understand-
ing of its function within a hierarchical architecture and micro-/
nano-structure, and then progresses to the identification of the
determining concept in the success of that system and the
synthesis of a model that is synthetically reproducible and
typically less complex than its biological counterpart [5,6]. In
many instances, it is still futile to attempt to recreate a biological
composite exactly: even with today’s advanced technology, the
replication of complex micro-/nano-structures, such as those
observed in biological composites like in bone or nacre, is not yet
possible. The end goal of ‘biomimetics’ remains, however, and
current methods continue to approach it by drawing upon
disciplines such as biology, physics and technology. Without
doubt, it is only by using an interdisciplinary approach, and
thereby associating not only different methods but also different
ways of thinking, that it will become possible to solve technical
problems through the abstraction, transfer and application of
knowledge obtained from biological models [7]. Nature has
implemented myriad strategies and thus demonstrated its ability
to solve countless functional problems, and therefore bio-
inspiration essentially constitutes a limitless source of new ideas
[8]. One subject that fascinates scientists is the exceptional
physical performance of the complex architectures and structures
found in natural composite materials. For example, some natural
hard tissues show combined physical properties that exceed the
sum of the individual components by orders of magnitude [9,10].
The nacre of a mollusk shell, for example, mostly consists of a
fragile mineral component, yet, despite the expectation that this
structure would display a highly brittle mechanical behavior –

given its high content of minerals – it is actually 3000 times
tougher than the minerals of which it is made. Nacres are therefore
damage tolerant and physically tough: they can even produce
‘quasi-ductile’ behavior and absorb an exceptional amount of
deformation [11,12]. Another example is mammalian teeth, which
are remarkably resilient structures [13]. Even though they are
composed of only brittle mineral and weak organic phase, they are
able to tolerate the high forces generated by a person chewing
thousands of times a day [14].

The main purpose of this review is to summarize the
fundamental aspects employed by nature in its toughening
mechanism for teeth, thereby allowing the definition and critical
analysis of those rules with a view to establishing modern
manufacturing processes capable of replicating complex systems.
In the light of the technical limitations to both classical and
computer-aided subtractive manufacturing methods, the develop-
ment and fine-tuning of new devices based on additive
manufacturing is proposed. This may open new research paths
in the area of dental materials, leading to enhanced mechanical
and esthetic properties.

2. Natural tooth model

Natural tooth shows mechanical behaviors that outperform
those of its constituents and the properties of their homogeneous
mixtures [10,12]. This performance is possible thanks to the natural
strategy of creating a hierarchical architecture made of interwoven
or interlocking structures at different dimensional levels (nano-,
micro- and macro-scales) comprising every component of the
tooth. In fact, teeth are composed of two distinct hard components:
an external hard shell, the enamel, and an internal tough core, the
dentin. The transition area between them is known as dentino–
enamel junction (DEJ) [15].
Tooth enamel is a hard, extracellular tissue with 96 vol% mineral
phase 4 vol% organic material and water [16,17], displaying
hierarchical organization from the nano- to the macro-scale
[18,19]. The fundamental blocks of this organization are nano-scale
crystals of carbonate hydroxyapatite (d. 25 nm, w. 100 nm and l.
>100 nm), which are predominantly aligned along their longitudi-
nal axes and glued together by proteins. The union of these crystals
form nanofibers, which represent the first hierarchical level of
organization. These fibers are bundled together into rod-like
structures, known as ‘prisms’ (l. 0.1–1.5 mm, dia. 5 mm), and into
the interprismatic matrix [20,21]. Prisms constitute the micro-
scale building blocks, the second hierarchical level of organization
of enamel. At the boundary between the prisms and interprismatic
substance there is an ultra-thin (<1 mm) sheath-like structure
known as enamel ‘tufts,’ composed of a non-collagenous, organic
matrix [22,23]. The third level of hierarchical organization is
determined by the arrangement and orientation of the prisms:
they are mostly parallel between tufts and perpendicular to the
tooth surface in the outer region of the enamel. Deep inside the
enamel, they are decussated and crisscross each other, forming
sinusoidal pathways [24].

The DEJ is an interlinking zone that measures 25–100 mm in
thickness and is characterized by a cross-sectional scalloped
profile [25]. This arrangement increases the surface area of the
interface between the two biological materials, allowing for a
strong bond [26]. The DEJ also ensures a soft and gradual transition
between not only the components of enamel and dentin, but also
their mechanical properties (Table 1) [27–40].

Dentin forms the bulk of the tooth and is a hard tissue
composed of 45 vol% inorganic material, 33 vol% organic material
and 22 vol% water [15]. The architecture is organized mainly
around ‘dentinal tubules.’ These tunnels of 1–2.5 mm diameter
across the whole width of the dentin are traced by the odontoblast
processes during dentinogenesis. A highly calcified collagen-
lacking matrix, known as the peritubular dentin (PTD), surrounds
the dentinal tubules and is itself embedded in a softer and
collagen-rich (Type I) matrix, called the intertubular dentin (ITD).
A semi-membranous electron-dense sheet-like structure, called
the lamina limitans, divides the PTD and the ITD throughout its
entire length [41,42]. The lamina limitans is chiefly composed of
non-collagenous proteins, such as proteoglycans (PGs), glycosa-
minoglycans (GAGs) and phosphorylated molecules [43–45],
which appear to play an important role in the mechanical behavior
of dentin. In fact, GAGs and PGs regulate hydrostatic and osmotic
pressure through their high hydrophilicy; and their selective
removal, by enzymatic dissolution, results in a drop of E-modulus
and hardness of the dentinal tissue [46–48].

Fractures of natural dental materials supposedly occur all of a
sudden at a critical tensile stress. Having analyzed the fracturing of
teeth, however – from a superficial fissure to a catastrophic
splitting – it is evident that the strategy used by nature to ensure
the survival of teeth follows much more complex rules. Although
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the hard and brittle enamel shell protects the underlying dentin
from wear damage, it is not resistant to fissures, even though it
does contain them [49]. In fact, its design acts efficiently to enclose
any precursor cracks and thus prevent a clear threat to the bulk
integrity of the tooth [50].

Closer examination of these superficial fractures reveals a range
of different kinds of cracks in the enamel: (a) ‘median’ and ‘cone’
cracks start from the contact point and show a descending
propagation [51]; (b) ‘margin’ cracks start from the cervical area
and show an ascending propagation [52]; and (c) ‘radial’ cracks
start from the inner DEJ and also show an ascending propagation
[53].

Tufts are believed to be the main cause of most of the radial
upward partial fissures [54]. These visible, crack-like defects
initiate easily in enamel as a consequence of function or overload
and subsequently they stabilize at different levels throughout the
enamel [55]. This mechanism supported by tufts provides an
internal shielding effect from occlusal stresses. In fact, even though
those defects are easy to induce, they hardly evolve during a
catastrophic failure of a tooth. On the contrary, the resistance
results increase as any cracks are filled with organic fluids, “gluing”
the crack walls together (self-healing) [14]. Even though their role
has been underestimated for a long time, tufts do provide a
stabilizing and toughening effect without which enamel would be
more brittle than glass.

Downward fractures are channeled through the parallel
arrangement of the prisms and along the interprismatic substance,
protecting the enamel surface from chipping [56,57]. Crack
diffusion is impeded by the decussation pattern of the third
hierarchical level of the inner enamel, which contributes to the
induction of crack deflection, crack bifurcation and crack bridging
[20,58]. These toughening mechanisms contribute to increasing
the crack-growth resistance of enamel. Nevertheless, if the applied
stress increases consistently, it may induce a transmission of the
fracture down to the DEJ, a more complex microarchitecture that
acts as a shield and prevents further crack growth [59]. At this
level, the crack can be halted: the energy of the propagation is
either absorbed by the tougher layer of mantle dentin or deviated
in a manner to produce a spalling of the enamel away from the
dentin [14,51]. The progression of a fatigue crack through the
dentinal tissue is considered uncommon, but a particularly high
overload can cause the fracture to spread throughout the bulk of
the tooth [60]. Transverse cracks can spread into the dentin causing
the loss of a large portion of the tooth. Catastrophic failure may also
occur when longitudinal cracks cause the entire tooth to split [61].

Theevolution ofacrack ishighly influencedby themicrostructure
of dentin [62,63]. In fact, fractures are prone to interact with
microscopic features, flanking them or going through them, and
following weaker interfaces, thereby generating tortuous paths. The
orientation, density and dimensions of dentinal tubules are part of
the toughening mechanisms of dentin as they increase its damage
tolerance: crack deflection, ligament bridging and crack branching
are the most important and efficient toughening aspects [64]. All
these mechanisms are activated when a crack first occurs, resulting
in the rising resistance-curve (R-curve) behavior of the tissue as the
crack expands. Wide tubules are more prone to initiate these
toughening mechanisms [65]. Conversely, the emergence and
increasing number of fracture-filled tubules due to age-related
degradation increases the brittleness of dentin [66]. Moreover, when
the crack direction runs parallel to the tubules, its progression is
promoted when compared to the perpendicular direction [67].

The appearance of a tooth is related to the optical properties of
its histo-anatomic structure, its three-dimensional configuration
and the respective internal, spatial relationships of its main
constituents: dentin and enamel [68]. Dental enamel is an almost
colorless and translucent tissue. Unlike glass, which is transparent,
it can refract and scatter light through its microstructure producing
different optical effects [69]. Enamel shows optical anisotropy,
which is indicative of the predominant role played by the rods in
the propagation of light [70,71]. The opalescent properties of
enamel are mainly determined by the arrangement and size of the
hydroxyapatite crystals and rods, which are able to scatter only a
few short wavelengths in the blue range and to transmit only
longer wavelengths in the red range [72,73]. Accordingly, teeth
display a bluish translucency, especially around the incisal edge,
when observed from outside the mouth, and a reddish/orange
appearance from the inside the mouth. The opacity of dentin is
more than three times higher than that of enamel, and its
saturation and brightness influence the amount of light reflected
[74]. In fact, the color of a tooth depends mainly on the color of
dentin [75,76]. There is a gradation of color (and translucency) in
different areas of a tooth. Starting from the cervical area, there is a
more saturated chroma and less translucency; toward the incisal
edge, the saturation decreases and the translucency becomes more
evident. In some individuals, however, such as adults and the
elderly, an inverse graduation may be observed. Tooth color
changes over the lifetime of an individual [77–79] due to multiple
reasons. On the one hand, enamel thickness decreases as a
consequence of physiological wear. As a result of this, the chroma
of dentin becomes more evident. As dentin ages, it becomes thicker
due to the deposition of tertiary dentin. Meanwhile, the
microstructure of the dentin is also altered, especially close to
the DEJ. This change makes teeth darker and more yellowish.

In summary, in order to understand the strategies that nature
uses to avoid premature dental failure, an in-depth understanding
of the structure of teeth at micro- and nano-scale is needed (Fig. 1).
Biological structures such as the mammalian teeth exhibit
optimized biomechanical properties (hard and damage tolerant)
thanks to their hierarchical morphological structure throughout
these levels. Nature’s approach is therefore ‘meso-scale’ (incorpo-
rating strategic nano-, micro- and macro-scale features), and it
transforms brittle and weak elements into tough and resistant
structures by assembling mineral component parts into a precise
design and surrounding them with weak interfaces. The weakness
of these interfaces is not as disadvantageous as may first appear, as
they actually contribute to inducing a toughening mechanism.
Essentially, their flexibility acts as a shock absorber that thereby
dissipates stress and multiplies the fatigue tolerance of the whole
structure. The result of this strategy is particularly efficient,
because it bestows isotropic characteristics on the overall complex,
despite the highly anisotropic structures that may be observed on
some hierarchical levels [80,81]. At the same time, the interactions
among the different intrinsic optical properties, microstructure
and histo-anatomic structures of the hard tissues create a very
specific chromatic effect, which determines the overall esthetic
appearance of the natural dentition.

3. The limitations of modern manufacturing of dental
restorations

Computer-aided design and computer-aided manufacturing
(CAD/CAM) technologies for the fabrication of dental restorations
have rapidly spread worldwide [82]. To date, the most commonly
used CAD/CAM methods in dentistry are subtractive: i.e.,
computer-controlled milling machines drill a block of material
to achieve a desired morphology. Dentistry has profited greatly
from this technology [83]. First, it makes it possible to create
accurate restorations while significantly saving time [84]. Second,
complex models can be built up more easily than with
conventional methods [85]. Third, the use of monolithic blocks
also means fewer internal defects, which are usually present in
handmade restorations and which compromise their strength [86].



Fig. 1. The meso-scale structures – dentin (left), enamel (right) – of the tooth. The number, densities and dimensions of dentin tubuli are lower in the outer dentin (a) than in
the inner dentin (b). Peritubular dentin presents a high degree of mineralization and a low organic rate, mostly represented by GAG, which forms the ‘lamina limitans’
completely embedded into the mineralized phase. On contrary, intertubular dentin shows a lower quantity of minerals and a higher organic rate, generally characterized by
collagen type I (c). Each collagen fiber is composed of nano-fibrils (d). Rod arrangement varies from outer enamel (e and g), where rods are arranged in parallel, to inner
enamel (f and h), where rods form a decussated pattern. Enamel rods are formed by bundles of hydroxyapatite nano-crystals (i and l).
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Table 2. A summary of materials, advantages and drawbacks of the most common technologies for additive manufacturing.

Methods Description Material Advantages Disadvantages Resolution
range (mm)

Vat photo-
polymerization
(SLA,DLP,CLIP)

A polymer is stored in a mobile vat/holder. The vat travels up or down following
a light/laser source which polymerizes the polymer layer-by-layer (or
continuously) into a three-dimensional structure.

Polymers
Ceramics

Fine resolution
High quality

Limited materials
Difficult
workability
Expensive
technology

5–10
[100,101,105]

Inkjet printing The printer lays down micrometer-sized droplets of ink (generally a
photopolymer) which are light-cured layer-by-layer.

Polymers
Ceramics

Quick
Low cost
technology
Microstructure
control
Colors Printing

Limited materials
Difficult
workability

5–200
[100,102]

Powder bed fusion
(SLS,SLM)

Laser light is used to sinter or melt an area on a bed of powdered material while
a platform moves up or down adding the material layer-by-layer.

Metals
Alloys
Polymers
Ceramics

Variety of
material
Microstructure
control

Low resolution
Expensive
technology
Slow process

80–250
[100,101]

Extrusion printing
(FFF,FDM)

A computer-guided nozzle extrudes a plastic material into a fine filament,
creating a three-dimensional structure layer-by-layer.

Polymers
Fiber-
reinforced
polymers

Fine resolution
Microstructure
control
Low cost
technology

Limited materials 20–200
[103,105]

Direct energy
deposition

AM process in which energy is directed into a small region to heat a substrate
and melt material that is being deposited. The working principle is different
from that of powder bed fusion: the high power-density laser is focused on a
continuous stream of metal powder being deposited onto the substrate and not
a pre-deposited layer of metal powder.

Metals
Alloys
Polymers
Ceramics

Quick
Low cost
technology

Low resolution
Limitation in
printing
complexes shape

250 [100]
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Despite all these advantages, subtractive processes are not free of
limitations:

1. They waste raw material [82]. The material milled from blocks is
difficult to recycle and is often considered as lost. Moreover,
milling tools wear rapidly and thus need to be replaced
frequently.

2. Milling procedures still require manual finishing, inevitably
consuming more time. In fact, after manufacturing, the raw
surfaces of restorations always need to be polished to remove
the roughness left by the burs. A single small defect left by a bur
may compromise the integrity of the entire restoration. This
factor may be seen as critical when considering that milling
processes may leave microscopic cracks on the surface of the
material and thus rendering a restoration vulnerable [87,88].

3. The monolithic chromaticity of a milled restoration does not
generally lend to outstanding esthetic results. Consequently,
integrating a restoration from an esthetic point of view often
involves color modification, either simply by painting the
surface or by employing a more complex layering stratification.
Those post-milling processes are not only time consuming but
may also induce the integration of further defects during the
manual retouching [89,90].

4. Modern CAD/CAM ceramic and resinous materials have high
mechanical properties, far more than natural tissues and
theoretically sufficient to withstand physiological stresses
[91–93]. Yet they are less efficient than natural tissues in
containing damage when it does occur, because their homoge-
neous internal microstructure does not replicate any of the
above-mentioned toughening mechanisms found in natural
tissues [94–96]. As a result, fracture remains one of the most
common cause of clinical failure in all kinds of metal-free
restorations [97].

In the light of these limitations and considerations, it seems
opportune to reconsider the choice of computer-assisted
manufacturing approach, and to think about future alternatives.
4. Future material for restorations: 3D-printing and topology
optimization

Additive manufacturing (AM), or three-dimensional (3D)-
printing, is a process that enables the creation of three-
dimensional objects from digital data using the layer-by-layer
deposition of material [98]. This method is already more than 30
years old [99]. The first working device, the stereolithography
apparatus, was developed in 1984 by Hull, C. W. However, the
mainstream adoption of 3D-printing only came about with the
expiry of the last patents in 2009 and the subsequent fall in costs.
Since then, fast-paced development has boosted the accuracy,
speed and reliability of 3D-printers, making them highly attractive
for a wide range of fields. We can already see a broad variety of AM
applications across several industries, including biomedicine and
dentistry. Engineering improvements have led to the development
of many different kinds of printing technology available nowadays,
each with their own advantages and disadvantages (see Table 2)
[100–105]. Each of these technologies is being increasingly applied
to different medical areas, including dentistry. In fact, 3D-printers
are currently employed in many dental offices and laboratories to
fabricate a wide array of occlusal splints [106], surgical guides
[107–109], diagnostic models [110,111], orthodontic set-ups [112]
and provisional restorations [113,114]. Moreover, 3D-printing
seems to be a very promising technology which may pave the
way for the development of new clinical strategies for bone
regeneration surgery involving large bone defects [115–117].

Additive manufacturing has different advantages when com-
pared to the subtractive approach. First, the waste material is
reduced by around 40%, and the residue can be more readily
recycled [118]. Second, the resolution of an additive process is
much higher than with the subtractive approach. The precision of a
3D-printer depends on the kind of technology employed and on
the thickness of the layers printable by the machine. However,
modern 3D-printers are able to stratify layers in the range of 10–
20 mm, enabling the production of smooth surfaces and precise
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margins. This resolution is even high enough to eliminate the final
stage of hand-polishing the surfaces of restorations, making the
overall process potentially much faster [119]. Moreover, some
preliminary in vitro tests have shown that restorations made using
stereolithography (SLA) technology exhibited equivalent or higher
precision marginal and internal adaptation than restorations made
using milling [120,121].

Despite all these advantages, the use of printed objects in
dentistry is still limited in many ways. The manufacturing of
definitive restorations is not yet possible due to the lack of suitable
materials. In subtractive manufacturing, the most commonly used
materials for definitive restorations are reinforced ceramics,
metals and composite resins. In additive manufacturing, some
polymer prototypes and metals are starting to find their way into
clinical practice, although 3D-printed ceramics for dental appli-
cations are still struggling to make a name for themselves [122].
Metal is commonly used for conventional prosthodontic treat-
ment. Laser-sintering 3D-printing techniques have been already
used in the production of removable prosthesis frameworks with
cobalt chromium [123]. Promising clinical outcome have also been
reported with posterior single-unit metal–ceramic crowns
[124,125]. However, despite its good mechanical properties, metal
is not suited for modern micro-invasive and esthetic treatments.
3D-printed reinforced polymers show better potential for final
restorations, but they will still need further development before
being fit for purpose. In fact, the mechanical properties of actual
resin-based 3D-printed workpieces are comparable to poly-methyl
methacrylate (PMMA) commonly used for removable dentures and
provisional restorations, which is far weaker than the highly filled
resinous composites used in daily practice for bonded, direct or
indirect definitive restorations. As a matter of fact, future research
into the use of 3D-printing technologies in dentistry should focus
on improving the mechanical properties of tooth-like materials,
which could come about by developing new ‘bio-inspired’
microstructural arrangements inside a material. The most prom-
ising approach from today’s point of view would be to pursue
topology optimization (TO). This mathematical method can be
defined as a process to optimize the structural arrangement within
the design of an object composed of one or more materials, with
the goal of maximizing physical performance [126]. The approach
was first introduced and described in 1994 by Sigmund, O. Initially,
TO was used to focus on the modification of the macroscopic
geometries of different objects designed using homogeneous
materials [127]. With the development of multi-material 3D-
printing techniques, it is now possible to work at a much higher
resolution when combining different materials into designs that
incorporate specific microstructures suited to a desired perfor-
mance. By breaking down the overall volume into the smallest
essential digital volume units (voxels), TO optimizes their
distribution to achieve a predefined functional objective
[128,129]. This principle has already been tested in other fields,
and the results are very encouraging. Drawing inspiration from
natural materials Mirzaeifar et al., for example, [130] created
samples composed of two distinct polymers with different
mechanical properties set in a specific two-level hierarchical
arrangement: stiff platelets inserted in a continuous soft phase. As
a result, they demonstrated a significant improvement in the
defect tolerance and physical properties of the new material and an
outcome in terms of mechanics far superior to those of each of
their constituents taken alone. Another research project improved
by up to 200 times the toughness of the specimens by
impregnating a soft resin into the micro-cracks of ceramic-like
glass materials [131]. Also, another recent development in this
field concerns fiber-reinforced composites, where micro-scale
optimization has been used to customize the arrangement of fibers
with a specific orientation. This new design allows fibers to achieve
quasi-isotropic elastic properties, with a great benefit in terms of
fracture toughness and damage tolerance [132].

For these reasons, future work might aim to mimic composition
and meso-scale organization of natural tooth tissues to obtain
similar toughening mechanisms. In other words, by working on the
layout of micro-scale assemblies composed of one or more base
materials, it would become possible to influence the macro-scale
material properties to meet current needs in dental restorations.
The same approach could also be feasible in emulating the optical
properties of the components of a tooth, in order to obtain more
esthetic and natural results.

5. 3D bio-printing for regenerative dentistry

Regenerative tissue engineering aims to restore the function
of injured tissue and organs through the production of cells and
bioactive agents [133]. There is ample literature on the
recreation of a range of biological tissue, including cardiac
[134], hepatic [135], renal [136], skin [137] and bone tissue
[138], all thanks to the recent development of 3D bio-printing
technologies.

Extending these regeneration methods to tooth would offer new
and innovative approaches to the widespread problem of edentu-
lism. It has been reported that 40% of adults in Western countries
present with one or more missing teeth, with this percentage
increasing in developing countries [139,140]. The benchmark
treatment today for a missing tooth is the titanium implant [141].
However, the 10-year survival rate of 82%–94% is not comparable to
the 50-year survival rate of 99.5% for healthy teeth [142]. In the light
of this, it appears appropriate to implement and develop the bio-
manufacturing methods that are primarily used to regenerate
healthy natural tooth or at least dental tissues, such as endodontium
and parodontium, thereby addressing irreversible pathologies.
Currently, 3D-printing technology is used to create scaffolds with
precise architectures, with cells accurately embedded and following
a design defined to recreate the biological structure of a specific
tissue [143]. On the other hand, the printing of every component
formingatissue, includinglivingcellsembeddedintheextra-cellular
matrices (ECM), is still in its early stages [144]. One obstacle is
printing resolution, which is not yet high enough to recreate the
complex nano-structure of tooth ECM, consisting of hydroxyapatite,
collagen, and non-collagenous matrix proteins [145,146].

The biggest challenge for 3D bio-printing, however, is that the
printing process must be cytocompatible and capable of reproducing in
vitro a microenvironment that most closely represents the
conditions of the tissue observed in vivo [147]. The ideal bio-ink
for bio-printing would consist of an aqueous gel solution containing
natural molecules from the parent tissue [148],i.e., the original ECM.
The ECM comprise a complex blend of proteins and other growth
factors that provide mechanical, biophysical, and biochemical cues
to cells in natural tissues. This mixture of components is essential
not only to provide structural support but also to regulate resident
cell differentiation [149], growth [150] and development [151].
Nowadays different bio-inks, based on a variety of hydrogels
composed of de-cellularized ECM, are used to build scaffolds for
different tissues. Recently, a bio-ink based on dentin-derived ECM,
presenting high levels of cell survival at different concentrations
and a high printability, has been successfully used [152].

Furthermore, 3D bio-printing has recently been used to
regenerate periodontal tissue, where periodontal support has
been lost, starting from hierarchical scaffolds capable of imitating
the architectural organization of the periodontium, composed of
hard (bone, cementum) and soft tissues (gingiva, periodontal
ligament). The scaffolds are assembled in a multiphasic approach,
as they are composed of various elements that recreate the original
structure of the periodontal apparatus [153–155].
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Lastly, it has been proposed that regenerating pulp tissue could
be an alternative to conventional root canal treatment (RCT)
[156,157]. Current RCT techniques typically involve the removal of
infected and/or necrotic tissue and its replacement with inert
synthetic biomaterials, thus sacrificing the biological response of
the tooth [158]. Regenerative endodontics seeks instead to induce
the re-vascularization and colonization of a new living pulp tissue,
throughout the full-length of the root canal and pulp chamber, by
the application of a mixture and an interpenetration of stem cells,
bioactive molecules (e.g., growth factors) and 3D bio-printed
scaffolds [159]. Although these new approaches appear highly
promising, daily clinical employment is still far from becoming a
reality [160].

6. Conclusion

The way in which teeth, nacre and other highly mineralized
biological materials display such outstanding physical performance
despite the weakness of their single constituent parts is a fascinating
issue. An in-depth examination of the nano- and micro-architecture
of these materials – including how they behave and how they fail –

reveals ‘universal’ toughening rules, which should be reproduced in
new ‘bio-inspired’ synthetic dental materials. Any such approach
will be enabled by cutting-edge developments in additive
manufacturing technologies which may open new pathways to
enhance the properties of tooth-like substitute materials such as
resinscompositeandceramics. 3D-printingtechnologies alsoappear
very promising for the regeneration of dental tissue.
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